
MA213

Second Year Essay

The Yoneda Lemma

2023-03-21

2111082

Front Matter Table of Contents

Contents

Table of Contents i

1 Introduction 1

2 Categories 1
2.1 Commutative Diagrams . 4
2.2 Functors . 5
2.3 Full and Faithful Functors . 6

3 Natural Transformations 6
3.1 Vertical Composition . 8
3.2 Natural Isomorphisms . 8

4 Hom-Functors 9

5 The Yoneda Lemma 12
5.1 The Yoneda Embedding . 15

6 Addendum 16
6.1 Group-Like Algebraic Structures . 16
6.2 Universal Set . 16
6.3 Set-Theoretic Problems . 17
6.4 Horizontal Composition . 19
6.5 Adjoint Functors . 21

References 22

MA213 | i

Yoneda Lemma Introduction

1 Introduction

Many structures in mathematics come alongside some notion of maps, which are used to relate different
objects with those structures. For instance, groups come alongside group homomorphisms, vector spaces
with linear transformations, probability spaces with measurable functions, and topological spaces with
continuous maps, to name a few.

A category is any collection of objects with maps between those objects that compose associatively. All
of the previous examples are thus specific types of categories, and many common constructions in those
areas do not actually rely on anything specific to that area and can be carried out and unified together
when performed at the level of a category. For instance, the Cartesian product, direct product of groups
(rings, monoids...), product topology, disjoint union, and graph tensor product are all instances of a
categorical product. If we can prove something about the categorical product, we’ll have proved a result
about all of these different types of objects.

Just as many properties in metric spaces are actually topological in nature, many mathematical objects
can be reduced to purely categorical constructions: direct sums, kernels, quotient objects, compactifica-
tions and completions are all also categorical in nature.

A common theme in category theory is that maps between objects are more important than the objects
themselves, and it will often be the case that it is easier to describe an object by the properties it satisfies
or what relations the object has, rather than what the object itself actually is. Even in abstract algebra,
this is often the case – we care that the elements of a group have group structure, not what the elements
themselves actually are or how we label them.

In mathematics, we often come across statements of the form, ∃!x : P (x), or, “There exists a unique x
such that P (x) holds.” The property P is called a universal property, and it uniquely characterises the
object x up to an isomorphism. For example,

Theorem 1.1. Let 1 be a set with one element. Then, for all sets X, there exists a unique function
from X to 1.

Proof. For existence, we define a function that maps every element of X to the unique element of 1.
Because every element of X only has one choice of destination, this function is unique. ■

So, the property “For all sets X, there exists a unique function from X to 1” uniquely characterises 1,
up to relabelling of the element. Rather than describing an object itself, universal properties allow us to
describe objects by how they relate to other objects in whatever universe we’re working in.

The Yoneda lemma expands on this concept, suggesting that we may study a category C by examining
the maps from C to the category of sets.

2 Categories

[Lei14] A category C consists of:

• A class ob(C) of objects in C .

• For all (ordered) pairs of objects A,B ∈ ob(C), a class hom(A,B) of maps or arrows called mor-
phisms from A to B, called the hom-set or hom-class of morphisms from A to B, also some-
times written C (A,B) or homC (A,B) (particularly useful if multiple categories are in use). If
f ∈ hom(A,B), we write f : A→ B or A f−→ B. The collection of all of these classes is the hom-set
of C , and is written hom(C).

• For any three objects A,B,C ∈ ob(C), a binary operation, ◦ : hom(A,B)×hom(B,C)→ hom(A,C),
(g,f) 7→ g ◦ f , called composition, such that,

– (associativity) if f : A→ B, g : B → C, and h : C → D, then h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

MA213 | 1

Yoneda Lemma Categories

– (identity) for every object X ∈ ob(C), there exists a morphism idX : X → X called the
identity morphism on X, such that every morphism f : A → X satisfies idX ◦ f = f , and
every morphism g : X → B satisfies g ◦ idX = g.

In the above definitions, we use the term class. This is because these collections of data generally do not
count as sets under ZFC or equivalent set theory axiomatisations (§ 6.2). For instance, the collection of
all sets does not qualify as a set under ZFC, but such a collection of objects is highly useful in category
theory, so we use classes instead. The notion of a class is informal in ZFC, since ZFC exclusively concerns
things which are sets, but here, we will define∗ a class as a collection of sets that is unambiguously defined
by a property all its members share, such as “being a set”. Any class which is never a set is a proper class,
while a class that is sometimes a set is a small class.

Throughout this document, we will largely ignore the distinction between the two, as the categories
we will construct will generally be locally small – the class of morphisms between any pair of objects
happens to be a set. That is, hom(A,B) is a set (in the sense that they can be constructed in ZFC) for
all A,B ∈ ob(C). If we also have that ob(C) is a set, then C is furthermore a small category.

Let’s go through these classes one by one.

An object can really be anything we want, but many of the simplest and most familiar examples will
begin with sets, often with additional structure, such as groups or rings. For any two objects, A and B,
the category has a set of morphisms from A to B, hom(A,B) = {f,g, . . .}. This doesn’t really explain
what a morphism actually is, but morphisms are so general that any more specificity is not particularly
useful. Defining a morphism is somewhat like defining a vector – is a vector fundamentally an arrow in
space which can be described with coordinates, or are they fundamentally ordered list of numbers? –
the answer being, neither; a vector is anything that obeys the vector space axioms. It’s more helpful to
define them by the properties they satisfy, rather than what they themselves are, and as we will soon
see, this viewpoint will become a recurring pattern. In fact, we should note that objects are in bijection
with identity morphisms, so it is possible to define categories entirely in terms of morphisms, and ignore
the objects entirely. We will not do so here, but it is yet another reminder that we will often care more
about how an object interacts with other objects than about the object itself.

It might be helpful to view a morphism a type of (directional) relation, rather than a function. There is
a morphism, f , from A to B if A is related to B, but B does not have to be related to A, and we write
f : A→ B, or draw an arrow from A to B on a diagram to represent this.

A B
f

It could be the case that A and B are not related at all, so the set of morphisms from A to B is empty.
We can also have multiple morphisms from A to B if A is related to B in several ways.

A B
f

g

An object can also be related to itself, and in multiple ways at once.

Morphisms must also have a binary operation defined on them, called composition that obey the com-
position law. If there are morphisms A

f−→ B
g−→ C, then the category must also contain a morphism

A
h=g◦f−−−−→ C. Furthermore, any three morphisms must compose associatively: that is, (h◦g)◦f = h◦(g◦f)

for all morphisms f , g and h (with the appropriate domains and codomains). Categories also require iden-
tity morphisms – for every object A, there must exist a morphism idA : A→ A such that all morphisms
f : A→ B and g : B → A satisfy idA ◦ g = g and f ◦ idA = f .

Let ob(C) = {A}, and hom(A,A) = {idA}. That is, C is a category containing only one object, and a
single morphism from that object to itself. This morphism trivially satisfies the assocativity and identity
requirements, so C is a category, called the trivial category, depicted below.

A idA

∗A more formal way to handle these classes is through the introduction of Grothendieck universes. This is not of high
importance to the main body of this document, and its discussion is relegated to § 6.3 in the addendum.

MA213 | 2

Yoneda Lemma Categories

Apart from the trivial category, we usually omit the identity morphism from such diagrams. Conversely,
a category which contains no morphisms apart from identity morphisms is called a discrete category.

Let ob(C) = {A,B}, and the non-identity morphisms be hom(A,B) = {f} and hom(B,A) = ∅. That
is, C is a category containing two objects, and a single non-identity morphism connecting them in one
direction only. This is the arrow category.

A B
f

Now, let (G, ·) be a group, ob(C) = {∗}, and hom(∗,∗) = G. For any two morphisms, f and g, we
define the composition f ◦ g to be f · g, so the morphisms have group structure. Because groups require
associativity and identities, the morphism axioms are satisfied, and we see that a group is really a one-
object category. In fact, there’s nothing specific to groups here – we could just have easily started with
a monoid or any other algebraic structure with associativity and identities.

These categories are pretty simple, but they give us an idea of how basic categories can be. We will build
a more complicated category next: Set. Unsurprisingly, the objects of Set are sets, while morphisms
are ordinary set functions. Composition of morphisms is just regular function composition, and identity
morphisms just identity functions which map elements of sets to themselves. The associativity and
identity laws follow from elementary properties of function composition. So, Set is a category.

Many other commonly used categories follow this formula – that is, their objects are sets with additional
structure, and their morphisms are functions that respect that structure. For example, in the category
Grp, objects are groups, and morphisms are group homomorphisms. Composition and identities are
inherited from Set, because everything in Grp is just a specialised version of something in Set. Similarly,
Ring is the category of rings and ring homomorphisms; Top, topological spaces and continuous maps;
VectK , vector spaces over a field K and linear maps; etc.

However, this doesn’t have to be the case, and in general, categories need not have sets as objects and
structure-preserving maps as morphisms. We construct a basic example of such a category as follows:
the objects in our category will be the real numbers, and for any real numbers, x and y, we define a
unique morphism from x to y, if and only if x ≤ y. The problem here, as opposed to in Set or Grp, is
that we can’t really say what a morphism really is. Here, it’s not something that acts on any elements
like a function in Set or a group homomorphism in Grp. In fact, it doesn’t really seem to do anything
at all, other than existing whenever x is less than or equal to y.

If we have morphisms f : x→ y and g : y → z, then we know x ≤ y and y ≤ z. By transitivity of ≤, we
have x ≤ z, giving a unique morphism h : x → z by definition, which we can assign to the composition
g ◦ f . Because this morphism is unique, this assignment is well-defined and determines the composition
of any pair of morphisms. Because x ≤ x holds for all x by reflexivity, there is a unique morphism from
any element to themselves, which we can use as the identity morphism and the associativity and identity
laws follow easily. So, (R, ≤) is a category. It may be noted that we used nothing specific to the real
numbers, so any set equipped with a non-strict preorder is in fact a (small) category.

We can also construct a new category from a pair of existing categories. Given categories C and D ,
the product category C ×D is defined by ob(C ×D) = ob(C)× ob(D), and homC×D((A,B),(A′,B′)) =

homC (A,A′)× homD(B,B′), with compositions defined componentwise [Lan13]. That is, if A f−→ A′ and
B

g−→ B′ are objects and morphisms in categories C and D respectively, then we have the objects and
morphism (A,B)

(f,g)−−−→ (A′,B′) in the product category C × D. We just take pairs of objects in the
constituent categories and pairs of corresponding morphisms between them.

The principle of duality states that every categorical definition and theorem has a dual definition and
theorem, obtained by reversing the direction of all morphisms in the categories involved. We often prefix
a dual notion with co-, such as in products and coproducts, or domains and codomains.

For instance, every category C has a dual or opposite category with the same class of objects, but with
the domains and codomains of all morphisms interchanged, denoted C op. That is, ob(C) = ob(C op), and
homC (A,B) = homC op(B,A) for all objects A and B. We note that this notion of duality for categories
is involutive, so (C op)op = C for all categories C .

MA213 | 3

Yoneda Lemma Commutative Diagrams

Theorem 2.1 (Conceptual Duality). Let Σ be a statement that holds in all categories. Then the dual
statement Σ∗ holds for all categories.

Proof. [Bor+94, adapted] If Σ holds in a category C , then Σ∗ holds in C op. Every category is the dual
of its dual, so Σ∗ holds in all categories. ■

2.1 Commutative Diagrams
It is often helpful to depict categories visually. We have already been using arrows to show morphisms
between objects, but we can do a lot more with these representations. If we take a selection of objects in
a category and draw morphisms between them, we can compose morphisms by following a path through
the diagram, and because of associativity, each path corresponds to a unique composition.

This is useful enough by itself, but certain diagrams have an additional helpful property. A diagram is
commutative if, for every pair of objects in the diagram, all routes between them are equivalent. For
example, this diagram is commutative if and only if h = g ◦ f .

X Y

Z

h

f

g

Suppose we have objects A and B in a category, and morphisms f from A to B and g from B to A such
that the following diagram is commutative.

A BidA idB

f

g

That is, f ◦ g = idB and g ◦ f = idA. f and g are then isomorphisms – morphisms with inverses – and
we alternatively label g as f−1. If an isomorphism between A and B exists, we say that A and B are
isomorphic, and we denote this relation as A ∼= B.

In the context of Set, isomorphisms are exactly the bijections, which is equivalent to the statement
that a function has a two-sided inverse if and only if it is bijective. With this, we see that two sets are
isomorphic if and only if they contain the same number of elements, possibly labelled in different ways
– that is, if their cardinalities are equal. The actual contents of the set, and any extra structure the set
has, aren’t important in Set.

The isomorphisms in Grp are group isomorphisms, as you’d might expect, but this is non-trivial to
prove, especially if the definition of a group isomorphism you use is a “bijective homomorphism”∗. To
show that group isomorphisms are isomorphisms in Grp, we need to prove that the inverse of a bijec-
tive homomorphism is also a homomorphism. Similarly, the isomorphisms in Ring are exactly the ring
isomorphisms.

An isomorphism is the mathematical way of saying that we only care about some specific property
of an object. If we’re working with the natural numbers, it doesn’t matter if we’re using the Peano
construction or the von Neumann construction, because there are isomorphisms between them that
preserve the behaviour of 0, 1, + and ·, which are the only things that matter for natural numbers (when
considered as a semiring). If we’re studying groups, then we don’t really care about what elements are
in each group, only that these elements have group structure. From the point of view of the category,
isomorphic elements look the same because they share the only properties that the category cares about.
You’ve probably heard that a topologist cannot tell the difference between a coffee mug and a doughnut.
This is because in Top, these two objects have the same number of holes (a topological invariant that
does matter in Top), and they can be bicontinuously and bijectively deformed into each other.

∗Which is not true for say, topological spaces, or the category Top, where homomorphisms are continuous functions.
However, the inverse of a bijective continuous function is not necessarily continuous, so bijective homomorphisms in Top
are not necessarily isomorphisms. The isomorphisms in Top are instead bicontinuous maps, also called homeomorphisms.

MA213 | 4

Yoneda Lemma Functors

2.2 Functors
One central theme of category theory is the idea of mappings between objects. Whenever we encounter
a new type of mathematical object, we should always ask if there is a sensible notion of a map between
these objects. Of course, categories themselves are mathematical objects we can ask this question on.

Let C and D be categories. A functor, F : C → D , consists of two parts: a mapping on objects, and a
mapping on morphisms, that follow two constraints. F : ob(C)→ ob(D) associates each object X in C
to an object, F (X), in D .

X 7→ F (X)

Similarly, the map F : hom(C) → hom(D) associates each morphism f : X → Y in C to a morphism
F (f) : F (X)→ F (Y) in D such that:

• F (idX) = idF (X) for every object X in C ;

• F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : X → Y and g : Y → Z in hom(C).

That is, the functor preserves identity morphisms and composition of morphisms.

A more concise way to phrase this is, for every pair of objects A,B ∈ ob(C), the functor F induces a
mapping FA,B : homC (A,B)→ homD(F (A),F (B)) that respects the structure of the categories.

A B

F (A) F (B)

f

F (f)

Theorem 2.2. Functors preserve commutativity of diagrams.

Proof. Because functors preserve composition of morphisms, for any two paths a1 ◦ a2 ◦ . . . ◦ an and
b1 ◦ b2 ◦ . . . ◦ bm connecting two objects in a commutative diagram of C , we have,

F (a1) ◦ F (a2) ◦ . . . ◦ F (an) = F (a1 ◦ a2 ◦ . . . ◦ an)
= F (b1 ◦ b2 ◦ . . . ◦ bm)

= F (b1) ◦ F (b2) ◦ . . . ◦ F (bm)

so the corresponding paths in D are also equal, and hence the diagram of D commutes. ■

Corollary 2.2.1. In particular, functors preserve isomorphism diagrams, so if f is an isomorphism in
C , then F (f) is an isomorphism in D .

One of the most basic examples of a functor is the constant functor ∆X which associates every object in
C to a single object X ∈ ob(D), and every morphism to idX . Because every morphism is transformed into
the identity morphism on X, composition and identities are trivially preserved, satisfying functoriality.

For a possibly more familiar example, let (G, ·) and (H, ∗) be groups, interpreted as categories G and
H . Any functor F : G → H must associate the only object in G to the only object in H , and is
thus determined only by its action on the morphisms. The functor must satisfy F (idG) = idH , and
F (g · h) = F (g) ∗ F (h) for all morphisms g,h ∈ hom(G). So, any functor G → H is just a group
homomorphism G→ H (and again, we haven’t mentioned inverses, so this holds similarly for monoids).

One very important type of functor is the so-called forgetful functor. Forgetful functors do nothing to the
objects and morphisms of a category apart from “forgetting” some additional structure that mattered in
the original category. For instance, the forgetful functor U : Grp→ Set.

Every object in Grp is a group – a set G with some extra structure in the form of a binary operation and a
set of axioms. The forgetful functor U “forgets” this extra structure on objects, and gives (G,·) 7→ G, which
is just a set – or rather, an object in Set. Similarly, morphisms in Grp are group homomorphisms, which
are just set functions that happen to respect this extra structure. Forgetting that additional structure

MA213 | 5

Yoneda Lemma Full and Faithful Functors

still leaves a normal set function – that is, a morphism in Set. Since morphisms are effectively unchanged,
identity and composition morphisms still exist, so U is a well-defined functor.

Let C and D be categories. A contravariant functor from C to D is a functor C op → D (or equivalently,
a functor C → Dop). In contrast, a covariant functor from C to D is an ordinary functor C → D .
Informally, a contravariant functor from C to D is just an ordinary functor C to D that “reverses all
morphisms and compositions”. This terminology is often used when a named category is involved – it is
more convenient to say that a functor is contravariant, than to start writing Setop everywhere. However,
contravariance can also arise naturally in some constructions:

For instance, the function that sends a set X to its power set P(X) defines the object mapping of a
functor from Set to Set. We can define its action on morphisms f : X → Y by mapping f to the direct
image function P(f) : P(X) → P(Y) defined by A 7→ f(A), thus defining the covariant power set
functor P(−) : Set → Set. However, we could alternatively define the morphism mapping by mapping
f to the inverse image function P(f) : P(Y) → P(X) defined by A 7→ f−1(A). The inverse image
function naturally reverses the direction of morphisms, thus defining the contravariant power set functor
P(−) : Setop → Set.

2.3 Full and Faithful Functors
For set functions, it is often helpful to consider properties the function may satisfy on the codomain,
such as surjectivity and injectivity. There exists a similar notion for functors: let C and D be locally
small∗ categories, and let F : C → D be a functor. If for every pair of objects, A,B ∈ ob(C), the induced
function FA,B : homC (A,B)→ homD(F (A),F (B)) is:

• surjective, then F is full ;

• injective, then F is faithful ;

• bijective, then F is fully faithful.

Note that faithfulness is distinct from injectivity, in that faithful functors are not necessarily injective
on objects or morphisms. For instance, let C be the discrete category on two objects, A and B, and let
D be the trivial category on an object X. Any functor F : C → D will map the two objects in C to the
unique object of D , and similarly, the identity morphisms on A and B are both mapped to the identity
morphism of X, so F is not injective on objects or morphisms. However, the functions FA,A and FB,B

each map one morphism to one morphism, and are hence injective (in fact, bijective), while FA,B and
FB,A are empty functions, and are hence vacuously injective (but not surjective, as F (A) = F (B) = X,
and homD(X,X) is non-empty). It follows that F is a faithful functor, but is injective on neither objects
nor morphisms. Similarly, full functors are also not necessarily surjective on objects or morphisms, which
can be shown by constructing a functor G : D → C in the previous example.

A fully faithful functor that is injective on isomorphism classes of objects is additionally said to be an
embedding. If there exists an embedding F from C to D , then F is said to embed C into D .

3 Natural Transformations

We have morphisms between categories in the form of functors, but the next obvious question to ask is,
is there a notion of mappings between functors?

Fix categories C and D , and let C D
F

G
be functors. A mapping C D

F

G

η or η : F ⇒ G

is then called a natural transformation.

F and G map objects and morphisms in C to objects and morphisms in D , respectively. To define
a mapping from F to G, we would like to associate objects and morphisms in D mapped by F to

∗Because the following definitions are in terms of properties of functions on hom-sets, we require that the hom-sets are
indeed sets as these notions are set-theoretic in nature and do not extend readily to proper classes. For large categories,
we extend the definition of full and faithful functors to left and right cancellative, respectively, instead.

MA213 | 6

Yoneda Lemma Natural Transformations

corresponding objects and morphisms in D mapped by G. For objects, this just means that if X is an
object in C , then we wish to associate F (X) with G(X). However, F (X) and G(X) are objects in D ,
so a relation between them is just a morphism in homD(F (X),G(X)). So, η just maps each X in C to
a morphism F (X)

ηX−−→ G(X) called a component of η.

C D

F (X)

X

G(X)

F

G

ηXη

However, homD(F (X),G(X)) possibly contains many morphisms we could assign to ηX . To help us decide
which one to use, consider a morphism f : A → B in C . Under F and G, f gives the two morphisms
F (f) : F (A) → F (B) and G(f) : G(A) → G(B). It would seem sensible for F (f) to be related to G(f)
under η. From the mapping on objects, we also have ηA : F (A)→ G(A) and ηB : F (B)→ G(B), giving
a square diagram of morphisms.

C D

A F (A) G(A)

B F (B) G(B)

ηA

ηB

F (f) G(f)f

F

G

F

G

η

η

(∃!)?

In this diagram, there are two paths from F (A) to G(B): ηB ◦ F (f), and G(f) ◦ ηA. Because cate-
gories require compositions, these morphisms always exist, but if ηA and ηB were assigned without any
other constraints, these compositions are not necessarily equal and there could be multiple distinct mor-
phisms from F (A) to G(B). However, we can use this to relate F (f) with G(f) by enforcing that these
compositions are equal, or equivalently, that the diagram commutes. This requirement is the naturality
condition.
So, for categories C and D , and functors C D ,

F

G
a natural transformation C D

F

G

η is a

collection of morphisms
(
F (X)

ηX−−→ G(X)
)
X∈ob(C)

such that the following diagram commutes:

A F (A) G(A)

B F (B) G(B)

ηA

ηB

F (f) G(f)f

That is, ηB ◦ F (f) = G(f) ◦ ηA for all f : A→ B in hom(C).

We next need to verify that these natural transformations actually function as categorical morphisms.
That is, that there always exists an identity, and that natural transformations compose associatively.

Following the component definition, the identity natural transformation on a functor F : C → D is a
natural transformation idF : F ⇒ F that maps each X ∈ ob(C) to a morphism F (X)

(idF)X−−−−→ F (X). This
is just the identity morphism on F (X), which always exists, so every component of idF also always exists.
The diagram, consisting of a single morphism and two identities, then trivially commutes, satisfying
naturality, and hence idF always exists. Identities, however, need to compose with other morphisms, and
leave them unchanged. How do natural transformations compose?

MA213 | 7

Yoneda Lemma Vertical Composition

3.1 Vertical Composition
Fix categories C and D , and let F,G,H : C → D be functors. Consider the natural transformations
α : F ⇒ G and β : G⇒ H.

C DG

F

H

α

β

From the diagram, it would seem sensible to define the composition β ◦ α to be a map from F to H.
Such a composition of natural transformations is called a vertical composition.

Consider an object X in C . The two components of α and β at X are then αX : F (X) → G(X) and
βX : G(X)→ H(X). Because these are just morphisms in D , they can be composed according to regular
morphisms composition rules, and so, we can define the component (β ◦ α)X to be βX ◦ αX : F (X) →
H(X). Because identity natural transformations map objects to identity morphisms, this also verifies
that they do in fact function as identities with respect to vertical composition.

However, it remains to show that these components satisfy the naturality requirement.

A F (A) G(A) H(A)

B F (B) G(B) H(B)

αA

αB

F (f) G(f)f

βB

βA

H(f)

Because α and β are natural transformations, they individually satisfy the naturality requirement, so
each square commutes individually, and hence the diagram as a whole also commutes.

For any two categories, we can now define functors between them, and natural transformations between
those functors that obey the morphism axioms. This suggests the construction of a new category, where
the objects are functors, and the morphisms are natural transformations.

Let C and D be categories. We construct the functor category [C ,D] by taking objects to be functors from
C to D , morphisms to be natural transformations, composition of morphisms to be vertical composition
of natural transformations, and identity morphisms to be identity natural transformations.

Given the name of vertical composition, it is unsurprising that we have a notion of horizontal composition,
but its discussion is relegated to § 6.4 in the addendum.

3.2 Natural Isomorphisms
Fix categories C and D . A natural isomorphism between functors from C to D is an isomorphism in the
functor category [C ,D].

That is, η : F ⇒ G is an natural isomorphism if η is a natural transformation and there exists a natural
transformation ϑ : G⇒ F such that ϑ ◦ η = idF and η ◦ ϑ = idG, and we write η−1 for ϑ.

A BidA idB

f

f−1
← cf. →

C

D

idF idGF G

η

η−1

MA213 | 8

Yoneda Lemma Hom-Functors

In this case, we say F and G are naturally isomorphic, and because natural isomorphisms are just
isomorphisms in a specific type of category, we reuse notation and write F ∼= G, or we say that F (X) ∼=
G(X) naturally in X whenever we need to bind a variable.

The next theorem gives an alternative characterisation of natural isomorphisms.

Theorem 3.1. Let C D

F

G

η be a natural transformation. Then, η is a natural isomorphism if

and only if ηX : F (X)→ G(X) is an isomorphism for all X ∈ ob(C).

Proof. Suppose η is a natural isomorphism, so there exists ϑ such that ϑ ◦ η = idF . Then, (ϑ ◦ η)X =
ϑX ◦ ηX = (idF)X for all X ∈ ob(C), so every component is an isomorphism, completing the forward
implication.

Now, suppose that ηX : F (X) → G(X) is an isomorphism for all X ∈ ob(C). Define ϑ : G ⇒ F by
ϑX = (ηX)−1. Because η is a natural transformation, we have ηB ◦ F (f) = G(f) ◦ ηA. Left and right
multiplying by ϑB and ϑA respectively, we have, F (f) ◦ ϑA = ϑB ◦G(f) which is exactly the naturality
condition, and hence ϑ is a natural transformation. Then, ϑ ◦ η =

(
F (X)

ϑX◦ηX−−−−−→ F (X)
)
X∈ob(C)

= idF ,

and η ◦ ϑ =
(
G(X)

ηX◦ϑX−−−−−→ G(X)
)
X∈ob(C)

= idG, and hence η is a natural isomorphism, completing the

backward implication. ■

In the reverse direction, we used that η is a natural transformation to obtain naturality for ϑ. Without
this, it could still be the case that F (X) ∼= G(X) for all X, but there does not exist a natural transfor-
mation from F to G at all, so “F (X) ∼= G(X) naturally in X” is a much stronger condition than just
“F (X) ∼= G(X) for all X”.

4 Hom-Functors

Suppose we wish to study the properties of an object A in a locally small category C . One way to do so is
to look at A from a different object, X. Then, look at A from another object, Y , and repeat. By looking
at how A is seen by other objects, we can obtain a lot of information about A. The relationships an object
X has with A are exactly the hom-sets hom(A,X) and hom(X,A), but these sets are different for each
X. In fact, in locally small categories, this assignment of hom-sets with respect to a fixed A is functorial
in X. That is, given a fixed A, every morphism X → Y induces a function homC (A,X)→ homC (A,Y).

Let C be a locally small category, and fix an object A ∈ ob(C). We define the (covariant) hom-functor,
hom(A,−) : C → Set, also denoted hA, as follows.

For each object X ∈ ob(C), we define hom(A,−)(X) = homC (A,X), so each object is mapped to the set
of maps from A to that object. A

X

X

homC (A,X)

We can interpret this as hA mapping objects to how they are “seen” by A.

For each morphism f : X → Y , we define hom(A,−)(f) to be the function hom(A,f) : homC (A,X) →
homC (A,Y), also denoted hA(f), defined by the postcomposition g 7→ f ◦ g.

A X YfhomC (A,X) [nLa23, adapted]

MA213 | 9

Yoneda Lemma Hom-Functors

That is, we map each morphism X
f−→ Y in hom(C) to the function hA(f) that maps each morphism

A
g−→ X to the composite morphism A

g−→ X
f−→ Y . In the above diagram, the morphisms on the left are

“combed” through to Y through f , and we can interpret this as hA mapping morphisms X
f−→ Y to how

A “sees” the object Y through f .

The contravariant hom-functor hom(−,B), also denoted∗ hB , is defined dually, with hB mapping objects
and morphisms to how they see B, rather than how they are seen from B.

C Set C op Set

X homC (A,X) X homC (X,B)

Y homC (A,Y) Y homC (Y,B)

hA hB

ff hA(f) hB(f)

[Rie17, adapted]

Theorem 4.1. hA is a functor.

Proof. We verify the functor axioms.

• Let A
f−→ X be a morphism. Then, [

hA(idX)
]
(f) = idX ◦f

= idhA(X)(f)

so hA preserves identities.

• Let A
h−→ X

g−→ Y
f−→ Z be morphisms. Then,[

hA(g ◦ f)
]
(h) = (g ◦ f) ◦ h

= g ◦ (f ◦ h)
=

[
hA(g)

]
(f ◦ h)

=
[
hA(g)

]([
hA(f)

]
(h)

)
=

[
hA(g) ◦ hA(f)

]
(h)

and hA preserves compositions. ■

Corollary 4.1.1. By duality, hB is also a functor.

For each object A, we have assigned a functor hA, encapsulating how the category is seen from A, and
as A varies, this view varies. However, it is the same category being seen from all objects, so it wouldn’t
be unusual for us to expect that this assignment has some internal consistency.

As it turns out, any morphism f : A → B induces a natural transformation hf : hB ⇒ hA. Note
the change in direction here! A collection of covariant functors come together to define a contravariant
natural transformation. And, if we started with the contravariant hom-functors, they would all come
together to define a covariant natural transformation.

Consider the component hB(X) → hA(X) of hf at an object X. Recall that a map hB(X) → hA(X)
just sends morphisms B → X to A→ X. We can interpret these hom-sets as contravariant hom-functors
at a fixed X, so we’re really just looking for a morphism hX(B) → hX(A), which is given exactly by
precomposition by f . That is, each morphism g : B → X is mapped to the morphism g ◦ f : A→ X.

∗The usage of hX for the covariant hom-functor and hX for the contravariant hom-functor is not standardised. Some
texts – notably [Lei14] – reverse the labelling, or use different notation entirely.

MA213 | 10

Yoneda Lemma Hom-Functors

In fact, there’s no reason why we should have to fix one argument at a time. The notation hom(A,−)
and hom(−,B) suggests that we may take both inputs to the hom-functor to be variable. Let f : X → Y
and h : B → A be morphisms, and consider the following diagram:

hom(A,X) hom(B,X)

hom(A,Y) hom(B,Y)

hom(A,f)

hom(h,X)

hom(B,f)

hom(h,Y)

Consider a morphism g ∈ hom(A,X). We will follow how it is mapped under this square along the two
different paths, in a technique called diagram chasing.

Along the upper path, we have g 7→ hom(h,X)(g) = g ◦ h 7→ hom(B,f)(g ◦ h) = f ◦ (g ◦ h). Along the
lower path, we have g 7→ hom(A,f)(g) = f ◦ g 7→ hom(h,Y)(f ◦ g) = (f ◦ g) ◦ h. But, by associativity of
morphism composition, these paths are equal, and we see that this diagram commutes for any choice of
f , g, and h, implying that hom(−,−) is a functor C op × C → Set.

A functor F : C → Set is representable if F ∼= hX (or hX) for at least one choice of X ∈ ob(C). The
object X along with the natural transformation F ⇒ hX are then a representation of F . As it turns out,
the object X is determined uniquely up to isomorphism in C . We often call representable functors just
representables.

As an example of a representable, the identity functor idSet : Set→ Set is represented by the singleton
set 1. Any function 1 → X just picks elements from the set X, so there are exactly as many functions
1 → X as there are elements of X, giving homSet(1,X) ∼= X = idSet(X), as required. Naturality also
follows trivially as half of the functions to be considered are identities.

For a more interesting example, the forgetful functor U : Grp → Set is represented by the group Z.
Let G be a group. Because group homomorphisms send identities to identities, 0 ∈ Z is always sent to
the identity in G, so any homomorphism ϕ : Z → G is determined entirely by the image of 1 with the
rest of the map following from the cyclic nature of Z. This suggests that we send each homomorphism
ϕ : Z→ G to its determining value ϕ(1), giving us the components of a map α : homGrp(Z,−)⇒ U . The
inverse map is then given by sending each g ∈ U(G) to the homomorphism z 7→ gz. But, we still need
naturality of this isomorphism.

Let f : G→ H be a group homomorphism.
G homGrp(Z,G) U(G)

H homGrp(Z,H) U(H)

U(f)hZ(f)

αG

αH

f

We will chase a homomorphism ϕ : Z → G through the diagram. Along the upper path, we have(
U(f) ◦ αG

)
(ϕ) = (f ◦ αG)(ϕ) = f(αG(ϕ)) = f(ϕ(1)) = (f ◦ ϕ)(1), and along the lower, we have,

(
αH ◦

hZ(f)
)
(ϕ) = αH

(
hZ(f)(ϕ)

)
=

(
hZ(f)(ϕ)

)
(1) = (f ◦ϕ)(1), so the diagram commutes, and homGrp(Z,G) ∼=

U(G) naturally in G, as required. Through similar arguments, the forgetful functor U : Ring → Set is
represented by the polynomial ring Z[x], and U : Mon→ Set by the monoid N0 (you might notice that
these are all free algebras on single generators – this is not a coincidence, § 6.5).

As another example, the contravariant power set functor P : Setop → Set sending sets to their power
sets and functions to their inverse image is represented by the two element set 2, often depicted as {⊤,⊥}
or {0,1} with morphisms interpreted as an indicator functions of elements [Rie17].

For an example of a non-representable functor [Dot23], consider the functor F : Set → Set defined on
objects by X 7→ X

∐
X. Suppose there exists a set Y such that homSet(Y,X) ∼= X

∐
X. If X = 1, then

homSet(Y,1) ∼= {1} ∼= 1 is a singleton set, while 1
∐

1 = {{0,1},{1,1}} ∼= 2 is a set with two elements,
so they are not isomorphic and hence no such Y exists.

MA213 | 11

Yoneda Lemma The Yoneda Lemma

5 The Yoneda Lemma

It is an almost universal meta-problem in all of mathematics to describe and classify collections of math-
ematical objects [Hal20]. While a mathematical axiomatic definition of an object certainly distinguishes
that object away from any others, this doesn’t tell us much about the collection of all those objects as
a whole. For example, while we can define a group in four short axioms, classifying all groups is a much
harder problem. For a simpler example, imagine we are tasked with classifying the real numbers. The
real number line is a classification of all real numbers by embedding them in some space that has more
properties than the real numbers had alone. For instance, the number line is a metric space, a topological
space, etc.

While we can define real number with Dedekind cuts, or with completeness axioms, this kind of embedding
gives a lot of additional useful information that isn’t visible from the axioms alone. Importantly, there is a
bijection between the points on the number line and real numbers, but we also have the new information
in that real numbers near each other on the number line are similar in magnitude. We can try extend this
idea of a classifying space to other kinds of objects, where “nearby” objects have more similar properties
than “distant” objects, and more generally, these spaces are called moduli spaces [Hal20]. Unfortunately,
the moduli space for any kind of useful object is often completely unrecognisable, and has very few
properties we can leverage to our advantage.

However, we can attempt to examine these spaces by looking at the maps from other spaces to them.
Let 1 be the set with one element. Any map from 1 to R effectively amounts to picking an element from
R, so there is a bijection between the functions 1 → R and the points in R. In fact, there’s nothing
specific about R here. More generally, the maps from the one-point space 1 to any space X amount to
picking points from X. If X is, for example, a metric or topological space, then it is a set equipped with
some extra structure in the form of a metric or a topology. By examining the maps from 1 to X, we can
recover half of that information: just by looking at X from the simplest possible (non-empty) space, we
recover all the points of X.

What if we look at the maps from a more complicated space? A map from the interval [0,1] to X is
just some parametrisation of a curve in X, so the maps [0,1]→ X recover the paths in X, while a map
from the circle S1 to X is just a topological loop, so the maps S1 → X recover the homotopy classes
of loops on X. The point is, we get more and more information about X by examining how it appears
from different choices of domains.

But exactly how much information can we recover? Is it always possible to obtain as much data from
looking at maps as we would from just analysing the space itself? After all, we have no reason to expect
that the entire structure of the space is always captured by these maps.

Except, it always is – and that, is the Yoneda lemma.∗

The remarkable thing is that the Yoneda lemma is a proof at the level of categories, so it holds for any
category of spaces.

We begin the lemma by asking what information representables recover. More precisely, let C be a locally
small category, and fix an object A ∈ ob(C), which induces the representable covariant functor hA. For
each covariant functor F , what are the natural transformations hA ⇒ F in the functor category [C ,Set]?

Lemma 5.1 (Yoneda). Let C be a locally small category. Then,

hom[C ,Set](hA,F) ∼= F (A)

naturally in F ∈ ob([C ,Set]) and A ∈ ob(C).

Before we proceed with the proof, we should unwrap what this is saying, in exact terms. Firstly, there is
an isomorphism of sets, so there is a bijective function between hom[C ,Set](hA,F) and F (A) – there are
as many natural transformations from hA to F as there are elements of F (A). Moreover, the collection

∗Or at least, part of it – it says a lot of things. The Yoneda lemma is very powerful in more advanced category theory,
but this is one elementary application of it.

MA213 | 12

Yoneda Lemma The Yoneda Lemma

of natural transformations between two functors isn’t guaranteed to be a set, even if the two associated
categories are (locally) small, so the lemma also shows that hom-sets of this form can be put into bijection
with proper sets.

Next, the isomorphism is said to be natural in F and A, suggesting that both sides are functorial in both
F and A – any morphisms F ⇒ G and A→ B must induce maps

hom[C ,Set](hA,F)→ hom[C ,Set](hB ,G) and F (A)→ G(B)

and not only does the isomorphism hold for every F and A, there exist isomorphisms hom[C ,Set](hA,F)→
F (A) and hom[C ,Set](hB ,G)→ G(B) such that the induced square commutes for any choice of F and A.

More precisely, we can regard the left and right sides of the expression as bifunctors [C ,Set]×C → Set,
mapping (F,A) to hom[C ,Set](hA,F) and F (A), respectively (in particular, this latter functor is known
as the evaluation functor), and the Yoneda lemma states that these functors are naturally isomorphic.

Proof. Let η : hA ⇒ F be a natural transformation. Consider the following diagram:

A hA(A) F (A)

B hA(B) F (B)

hA(f)

ηB

F (f)

ηA

f

We chase the identity idA ∈ hom(A,A) = hA(A) through the diagram. Along the upper path, we have
idA 7→ ηA(idA) 7→ F (f)(ηA(idA)). Along the lower path, we have idA 7→ hA(f)(idA) = f ◦ idA = f ,
followed by f 7→ ηB(f). From naturality of η, this diagram is commutative, so these two paths must be
equal, giving ηB(f) = F (f)(ηA(idA)).

Remarkably, the input to the function on the right side is always ηA(idA). This implies that any natural
transformation hA ⇒ F is completely determined by its value at idA. This naturally induces a function
hom[C ,Set](hA,F) → F (A) defined by η 7→ ηA(idA), and moreover, this function is a bijection, as every
value in F (A) conversely extends to a unique natural transformation.

This establishes the required isomorphism, but we still need to show naturality.

First, we write both sides as functors ϑ, ev : [C ,Set]× C → Set. As mentioned before, the action of the
two functors on objects is given by,

ϑ(F,A) = hom[C ,Set](hA,F) and ev(F,A) = F (A)

respectively. Now, we need to define their action on morphisms.

Being a product category, every morphism (F,A) → (G,B) in [C ,Set] × C is of the form (α,f), where
α : F ⇒ G is a morphism in [C ,Set], and f : A → B is a morphism in C . Fix two such morphisms,
α : F ⇒ G and f : A→ B.

The first functor, ϑ, sends (α,f) to a function ϑ(α,f) : hom[C ,Set](hA,F)→ hom[C ,Set](hB ,G) defined by

mapping each φ : hA ⇒ F to the composition hB
hf−−→ hA

φ−→ F
α−→ G. That is, [ϑ(α,f)](φ) = α ◦ φ ◦ hf .

The second functor, ev, sends the morphism (α,f) to a function ev(α,f) : F (A)→ G(B). At this point,
we should recall that α is a natural transformation, so the following diagram commutes:

A F (A) G(A)

B F (B) G(B)

αA

αB

F (f) G(f)f

MA213 | 13

Yoneda Lemma The Yoneda Lemma

From this, we see that there are two paths from F (A) to G(B), namely, F (A)
αA−−→ G(A)

G(f)−−−→ G(B),

and F (A)
F (f)−−−→ F (A)

αB−−→ G(B). But, from naturality, these compositions are equal, so either choice
yields the desired map. Next, we verify the functor axioms for ϑ and ev. First, the identity law:

ϑ(idF , idA)(φ) = idF ◦ φ ◦ hidA

= φ

= id[hom(HA,F)](φ)

ev(idF , idA) = F (idA) ◦ (idA)A
= idF (A) ◦ idF (A)

= idF (A)

where the first term on the right follows from the functoriality of F . So, ϑ and ev preserve identities.

Now, let (F,A)
(α,f)−−−→ (G,B)

(β,g)−−−→ (H,C) be morphisms.

ϑ
(
(β,g) ◦ (α,f)

)
(φ) = ϑ(β ◦ α,g ◦ f)(φ)

= (β ◦ α) ◦ φ ◦ hg◦f

= (β ◦ α) ◦ φ ◦ (hf ◦ hg)

= β ◦ (α ◦ φ ◦ hf) ◦ hg

= β ◦
(
ϑ(α,f)(φ)

)
◦ hg

=
[
ϑ(β,g) ◦ ϑ(α,f)

]
(φ)

ev
(
(f,g) ◦ (α,f)

)
= ev(β ◦ α,g ◦ f)
= H(g ◦ f) ◦ (β ◦ α)A
= H(g) ◦H(f) ◦ βA ◦ αA

= H(g) ◦ βB ◦G(f) ◦ αA

=
(
H(g) ◦ βB

)
◦
(
G(f) ◦ αA

)
= ev(β,g) ◦ ev(α,f)

On the left, the expansion of hg◦f follows from functoriality, with the reversal of the components resulting
from contravariance. On the right, the expansion of (β ◦ α)A follows from the definition of vertical
composition, and the replacement of H(f) ◦ βA with βB ◦ G(f) follows from the naturality of β. This
last point is perhaps clearer as a diagram chase:

F (A) H(A) F (A) G(A) H(A)

F (B) G(B) H(B)

F (C) H(C) F (C) G(C) H(C)

αA βA

βBαB

αC βC

F (f)

F (g)

G(f)

G(g) H(g)

H(f)

ev(α,f)

ev(β,g)

H(g◦f)

(β◦α)A

F (g◦f)

(β◦α)A

ev (
(β ◦

α),(g ◦
f))

The first two lines of the equation correspond to taking the upper path along the left diagram. The
expansion in the third corresponds the uppermost path through the right diagram that passes through
H(A). But the upper right square commutes by the naturality of β, so we may route through G(B)
instead of H(A). But then, this is just the route created by taking ev(α,f) followed by ev(β,g), as
required. If we take the other definition of the evaluation functor, we similarly use the functoriality of α
along the lower path.

So, ϑ and ev preserve composition, finally verifying functoriality.

Now, we define a natural transformation Φ : ϑ⇒ ev. As stated earlier, we will map a natural transforma-
tion η ∈ ϑ(F,A) to its determining value ηA(idA) ∈ ev(F,A), giving us our definition of the component
Φ(F,A). All that remains is to show naturality:

(F,A) ϑ(F,A) ev(F,A)

(G,B) ϑ(G,B) ev(G,B)

Φ(F,A)

Φ(G,B)

ϑ(α,f) ev(α,f)(α,f)

MA213 | 14

Yoneda Lemma The Yoneda Embedding

(
ev(α,f) ◦ Φ(F,A)

)
(η) = ev(α,f)

(
ηA(idA)

)
=

(
αB ◦ F (f)

)(
ηA(idA)

)
= (αB ◦ ηB ◦ hA(f))(idA)

= (αB ◦ ηB)
(
hA(f)(idA)

)
= (αB ◦ ηB)(f ◦ idA)
= (αB ◦ ηB)(f)
= (αB ◦ ηB)(idB ◦ f)
= (αB ◦ ηB)

(
(hf)B(idB)

)
= (αB ◦ ηB ◦ (hf)B)(idB)

= (α ◦ η ◦ hf)B(idB)

= Φ(G,B)(α ◦ η ◦ hf)

=
(
Φ(G,B) ◦ ϑ(α,f)

)
(η)

so the diagram commutes, as required. ■

5.1 The Yoneda Embedding
An important case of the Yoneda lemma is when the functor F is another hom-functor, hB :

hom[C ,Set](hA,hB) ∼= hom(B,A)

That is, the natural transformations between the two covariant hom-functors induced by A and B are
in bijection with the morphisms between A and B in reverse direction: this is a contravariant(!) functor
C op → [C ,Set]. This functor is denoted h•, defined on objects A by h•(A) = hA, and on morphisms
f by h•(f) = hf . Similarly, applying the contravariant version of the Yoneda lemma to a contravariant
hom-functor naturally gives rise to the covariant functor h• : C → [C op,Set].

In this context, the Yoneda lemma simply says that the functor h• gives an embedding of C op into
[C ,Set]. These functors are called the Yoneda embeddings, and are often denoted H (hiragana yo) for
Yoneda (from this point onwards, we will use H wherever a proof applies to either functor).

Theorem 5.2 (Yoneda Embedding). Let C be a locally small category. Then, the Yoneda embeddings
H : C ↪→ [C op,Set] and H : C op ↪→ [C ,Set] are embeddings – that is, H is fully faithful, and injective
on objects up to isomorphism.

Proof. H is fully faithful if the induced mapping HA,B : hom(A,B)→ hom(H(A),H(B)) is a bijection
for all objects A,B ∈ ob(C). But this is just the statement of the Yoneda lemma applied to hom-functors.
Injectivity on objects up to isomorphism is proved in the corollary. ■

Corollary 5.2.1. If hom(X,−) ∼= hom(Y,−) or hom(−,X) ∼= hom(−,Y), then X ∼= Y .

Proof. By the Yoneda lemma, any natural transformation η : h•(X)→ h•(Y) (dually, h•) is induced by
a morphism Y → X (resp. X → Y). If η is an isomorphism, it follows that η and η−1 are both induced
by inverse morphisms between X and Y , so X ∼= Y . ■

At the beginning of this section, we asked how much information we get when we examine how an
object looks from all other possible viewpoints. This corollary states that we recover the object, up to
isomorphism – that is, the maps into or maps out of an object contain exactly as much information as
that object itself.

MA213 | 15

Yoneda Lemma Addendum

6 Addendum

6.1 Group-Like Algebraic Structures
In category theory and abstract algebra, we often speak of sets with additional structure, usually in the
form of a binary operation on that set. The simplest structure we begin with is a magma: a set that
is closed under a binary operation. Adding in additional requirements produces a variety of group-like
structures.

Magma

Quasigroup Semigroup

Unital
Magma

Inverse
Semigroup

Loop Monoid

Group

Identity

IdentityIdentity

Identity

Associativity

Associativity

Associativity

Associativity

Divisibility

Invertibility

Invertibility

Divisibility

Of particular interest is the group and the monoid. The former is important to mathematics for obvious
reason, and the latter is important in computer science – both theoretical and applied – as, for instance,
the set of strings that can be constructed from a given set of characters forms a free monoid under the
operation of concatenation.

6.2 Universal Set
We quickly recall three of the axioms of ZF(C).

• The axiom of extensionality states that two sets are contained by the same sets if they contain the
same elements. (Informally, sets are determined entirely by their elements – two sets are equal if
and only if they contain exactly the same elements.)

• The axiom of pairing states that if x and y are sets, then there exists a set that contains x and y
as elements.

• The axiom of regularity states that every non-empty set x contains a member y such that x and y
are disjoint.

Theorem 6.1. Under the ZF(C) axiomatisation of set theory, there does not exist a universal set:

¬∃S∀x : x ∈ S

or, a set containing all sets.

Proof. Suppose S is a universal set. We can construct the set {S} by applying the axiom of pairing to
S with itself and removing the extra copy of S with the axiom of extensionality. Then, as {S} contains
only one element, regularity implies that S is disjoint from {S}, and hence S does not contain itself,
contradicting the construction of S. It follows that S is not a set. ■

MA213 | 16

Yoneda Lemma Set-Theoretic Problems

6.3 Set-Theoretic Problems
As mentioned before, the collections of objects and morphisms in a category do not generally form a set.
The four main solutions [Bor21] to this are as follows:

• Ignore the problem;

• Use classes;

• Bounding the size of objects by some cardinal number, κ;

• Use Grothendieck universes (or other axiomatic solutions).

In this document, we mainly use a combination of the first two options: while we have recognised that
these collections do not necessarily form sets, we also do not address the problem any further.

In our usage, this is acceptable as the categories we encounter are generally (locally) small and the classes
we use are, for all intents and purposes, always sets wherever the distinction could matter. It is only in
more advanced categorical constructions that the difference between sets and classes is of importance, but
it is notable that many theorems in category theory are deeply intertwined with set-theoretic questions
of size [Shu08] unlike in many other areas of mathematics. For instance, the Yoneda lemma demands
that the categories used are locally small, while Freyd’s celebrated adjoint functor theorem explicitly
depends on a set of morphisms actually being a set and not a class.

One problem with our formulation of classes is that classes cannot contain other classes, or else we
encounter problems when attempting to form the class of all classes. This causes some issues with
constructing certain large categories which require collections of classes of objects or morphisms. The
solution to this to use conglomerates, as in [Lan13] and [AHS90], which are to classes what classes are
to sets. Since we mainly work with categories that have at most classes of objects and morphisms,
conglomerates are generally a satisfactory solution to this problem, but we still run into issues when
forming things like the category of all categories with this approach.

The third option, which we have opted not to use, turns the object and hom-classes of a category into
sets by bounding the sizes of objects available. The hom-class is then bounded by the size of the power
set of the object class, which is a set by the axiom of the power set. For instance, instead of considering
the class of all sets to be the object class of Set, we pick a cardinal number κ, and only consider the set
of sets of cardinality at most κ.

However, this is somewhat clumsy and artificial, as we need to keep track of extra data for every category
we work with, and moreover, it involves making an arbitrary choice, with runs counter to the working
principles of naturality.

The fourth option is to use a Grothendieck universe (or to resolve these problems in other axiomatic
ways). Before we discuss Grothendieck universes, we must discuss model theory.

In order to mathematically encapsulate some concept, we begin with a list of axioms, which we take
to be true by definition, and a list of inference rules that let us derive new statements from existing
statements. Together, axioms and inference rules generate a theory consisting of all the statements that
can be constructed from the axioms by applying inference rules to them. All the statements within a
theory that are not axioms are called theorems.

For instance, we could have,

• All men are mortal (axiom);

• Socrates is a man (axiom);

• If “all A are B” and “X is A”, then “X is B” (inference rule);

• Therefore, Socrates is mortal (theorem).

We can’t do anything further with these axioms using our inference rule, so these three statements form
our entire theory about Socrates, men, and mortality.

MA213 | 17

Yoneda Lemma Set-Theoretic Problems

A model is any collection of objects that is consistent with a given theory. For instance, while our theory
requires for us to have a mortal Socrates, it does not preclude the possibility of our model containing an
immortal Cerberus, because the theory does not say anything about Cerberus, or about things that are
not men.

For a more practical mathematical example, suppose we are trying to axiomatise the natural numbers.
We begin by asserting that 0 is a number, then by saying that every number x has a successor, S(x). The
natural numbers are clearly a model of these two axioms, but they aren’t the only model. For instance,
a model consisting of a single number, 0, such that S(0) = 0, is consistent with our theory. The real
numbers, or complex numbers are also consistent with our theory. So, the goal is to add just enough
axioms to sufficiently constrain the possible models for our theory to be useful.

In much the same way, the axioms of ZFC are not assertions about “the real” universe of sets, because
they are satisfied by many possible “universes of sets” [Shu08]. In fact, the Löwenheim-Skolem theorem
states that any countable theory of first-order logic that admits an infinite model cannot have a unique
model (up to isomorphism).

A Grothendieck universe U is a set that is transitive, closed under pairing, power sets, and indexed
unions. That is,

• (transitive) x ∈ U ∧ y ∈ x→ y ∈ U ;

• (pairing) x ∈ U ∧ y ∈ U → {x,y} ∈ U ;

• (power set) x ∈ U → (x) ∈ U ;

• (indexed unions) I ∈ U ∧ {xi}i∈I ⊆ U →
(⋃

i∈I xi

)
∈ U .

You may notice that several of these properties closely mirror axioms of ZFC, and as such, U will behave
much like a “universal set” with respect to any element it contains. That is, for any element x ∈ U , U
will contain all subsets of x, P(x), P(P(x)), etc., and it turns out that any uncountable Grothendieck
universe is a model of ZFC itself.

Furthermore, the existence of non-trivial Grothendieck universes is not provable from within ZFC, as
it would imply the existence of certain infinite cardinal numbers called strongly inaccessible cardinals
that are not provable from ZFC, and in fact, it is possible to formulate Grothendieck universes as a
type of inaccessible cardinal, as is done in [Shu08]. We can then add an axiom stating the existence of a
Grothendieck universe.

Another popular extension of ZFC is Tarski-Grothendieck set theory, which is ZFC with an additional
axiom that roughly says “for every set x, there exists a Grothendieck universe it belongs to”, which states
the existence of not just one Grothendieck universe, but an entire infinite hierarchy of Grothendieck
universes.

In any case, once a Grothendieck universe is established, we may speak of small and large sets, which
are sets that are and are not elements of the Grothendieck universe, respectively, instead of sets and
(proper) classes.

Yet another approach is to abandon classical axiomatisations of set theory altogether, and formulate
the foundations of mathematics in terms of category theory. There are several such systems with very
different approaches, the most popular of which include Elementary Theory of the Category of Sets
(ETCS), First Order Logic with Dependent Sorts (FOLDS), and homotopy type theory. These topics are
far beyond the scope of this document, but they make for very compelling motivations for the study of
category theory. For the interested reader, the following may make for useful further reading:

[Awo11] General background reading;

[LR03] Undergraduate textbook based in categorical foundations;

[Mak95] FOLDS;

[Uni13] Homotopy type theory.

MA213 | 18

Yoneda Lemma Horizontal Composition

6.4 Horizontal Composition
Given the name of vertical composition, it is unsurprising that we have a notion of horizontal composition,
denoted by ⋄.

Fix categories C , D and E , and let F,G : C → D and F ′,G′ : D → E be functors. Consider the natural
transformations α : F ⇒ G and β : F ′ ⇒ G′.

C D E

F F ′

G G′

βα

Because functors compose, we also have functors F ′ ◦ F : C → E and G′ ◦ G : C → D . The horizontal
composition β ⋄ α then maps F ′ ◦ F to G′ ◦G.

We again consider an object X in C . F and G map X to a pair of objects in D , and α gives the morphism
between them. F ′, G′ and β then map these objects and morphism to a square in E .

C

D

E

F (X) F ′(F (X)) G′(F (X))

X

G(X) F ′(G(X)) G′(G(X))

αX

F

G′(αX)F ′(αX)

βF (X)

βG(X)

G

G′

F ′

F ′

G′

α

β

β

(β⋄α)X

The square of morphisms in E commutes as β is a natural transformation, so we can define (β ⋄ α)X =
βG(X) ◦ F ′(αX) = G′(αX) ◦ βF (X).

Next, we show naturality of this assignment.

First, consider the naturality diagram of α.

A F (A) G(A)

B F (B) G(B)

αA

αB

F (f) G(f)f

Then,
A F ′(F (A)) F ′(G(A))

B F ′(F (B)) F ′(G(B))

αA

αB

F ′(F (f)) F ′(G(f))f (1)

also commutes for any choice of A f−→ B in C as F ′ is a functor (Theorem 2.2).

MA213 | 19

Yoneda Lemma Horizontal Composition

Next, we observe the naturality diagram of β.

X F ′(X) G′(X)

Y F ′(Y) G′(Y)

βX

βY

F ′(g) G′(g)g

This diagram commutes for choice of objects and morphism X
g−→ Y in D , so, picking X = G(A),

Y = G(B), and g = G(f), we have that

G(A) F ′(G(A)) G′(G(A))

G(B) F ′(G(B)) G′(G(B))

βG(A)

βG(B)

F ′(G(f)) G′(G(f))G(f) (2)

commutes (again, for any choice of A f−→ B in C).

Pasting diagrams (1) and (2) together, we have,

A F ′(F (A)) F ′(G(A)) G′(G(A))

B F ′(F (B)) F ′(G(B)) G′(G(B))

f G′(G(f))F ′(G(f))F ′(F (f))

F ′(αB)

F ′(αA)

βG(B)

βG(A)

We have just shown that the left and right squares commute, and hence the outer square also commutes.

This gives,

(G′ ◦G)(f) ◦ (β ◦ α)A = G′(G(f)) ◦ βG(A) ◦ F ′(αA)

= BG(B) ◦ F ′(αB) ◦ F ′(F (f))

= (β ◦ α)A ◦ (F ′ ◦ F)(f)

which is exactly the naturality condition.

Vertical and horizontal composition are related by the interchange law : given categories, functors, and
natural transformations,

C D E

F

G

H

α

β

F ′

G′

H′

α

β

we have,

(β′ ◦ α′) ⋄ (β ◦ α) = (β′ ⋄ β) ◦ (α′ ⋄ α)

In these situations, not only do we have objects and morphisms in the form of categories and functors,
but we also have morphisms between morphisms in the form of natural transformations between those
functors.

MA213 | 20

Yoneda Lemma Adjoint Functors

What we have really been examining is an example of a 2-category, which is a generalisation of a category
to include morphisms between morphisms. But of course, there are 3-categories, and now we’ve started
counting. This line of inquiry quickly leads to ∞-categories, which are some of the objects of study in a
generalisation of category theory called higher category theory.

6.5 Adjoint Functors

Fix categories C and D , and let C D
F

G
be functors. F is left adjoint to G, and G is right adjoint

to F , if,

homC (F (A),B) ∼= homD(A,G(B))

naturally in A ∈ ob(C) and B ∈ ob(D), and we write F ⊣ G to denote this relationship.

Often, forgetful functors from a category C of algebraic objects to Set admit a left adjoint which is often
given by the free functor that constructs the associated free algebraic object on any set.

Recall that a free group FS on a set S consists of all words whose letters are either elements s ∈ S,
or their formal inverses s−1, modulo the equivalence relation that identifies xx−1 and x−1x with the
empty string, ε. The group operation is then given by concatenation of words, and the identity element
is given by ε. Note that the free group on a single generator is isomorphic to (Z,+), with the isomorphism
ϕ : F (1)→ Z given by mapping each word to its length.

As you’d might expect, this assignment is a functorial: there is a functor F : Set→ Grp called the free
group functor that sends every set S to the free group FS .

Let X be a set, Y a group, and U : Grp → Set the forgetful functor. Every group homomorphism
ϕ : F(X) → Y is determined uniquely by the image of the generators of F(X), which are exactly the
elements of the set underlying Y , or, U(Y). That is, every group homomorphism ϕ ∈ homGrp(F(X),Y)
corresponds uniquely to a function X → U(Y), which is exactly the statement,

homGrp(F(X),Y) ∼= homSet(X,U(Y))

Through some tedious algebra, naturality can also be verified, and the free group functor F : Set→ Grp
is left adjoint to the forgetful functor U : Grp→ Set. Again, similar arguments show that the forgetful
and free functors for other algebraic structures like rings and monoids are all adjoint pairs.

Now, suppose a functor F : Set→ C is left adjoint to a functor G : C → Set, so we have,

homC (F (A),X) ∼= homSet(A,G(X))

Note that the hom-set on the right is in Set, and we know that the set functions 1→ X are in bijection
with elements of X for any set X, so we have,

homSet(1,G(X)) ∼= G(X)

so G is representable! Moreover, we have,

homC (F (1),X) ∼= G(X)

so G is specifically represented by F (1). Because F and G were arbitrary, this shows that any such right
adjoint is representable. In the case where F and G are a free and forgetful adjoint functor pair, this also
shows that forgetful functors are always represented by free objects on single generators.

MA213 | 21

Yoneda Lemma REFERENCES

References

[Lei14] Leinster, T. Basic Category Theory. Cambridge University Press, 2014. isbn: 9781107044241.

[Lan13] Lane, S.M. Categories for the Working Mathematician. Springer New York, 2013. isbn:
9781475747218.

[Bor+94] Borceux, F. et al. Handbook of Categorical Algebra: Volume 1, Basic Category Theory. Cam-
bridge University Press, 1994. isbn: 9780521441780.

[nLa23] nLab authors. Yoneda embedding. Revision 39. 2023. url: https://ncatlab.org/nlab/
show/Yoneda+embedding.

[Rie17] Riehl, E. Category Theory in Context. Dover Publications, 2017. isbn: 9780486820804.

[Dot23] Dotto, E. Personal communications. 2023.

[Hal20] Halpern-Leistner, Daniel. Moduli theory. 2020. url: http://pi.math.cornell.edu/
~danielhl/modern_moduli_theory.pdf.

[Bor21] Borcherds, R.E. Categories for the Idle Mathematician. 2021. url: https://www.youtube.
com/watch?v=JOp7mH72Jlg.

[Shu08] Shulman, Michael A. Set Theory for Category Theory. 2008. arXiv: 0810.1279 [math.CT].

[AHS90] Adamek, J., Herrlich, H., and Strecker, G.E. Abstract and Concrete Categories: The Joy of
Cats. Wiley, 1990. isbn: 9780471609223.

[Awo11] Awodey, Steve. From Sets to Types to Categories to Sets. 2011. isbn: 9789400704305.

[LR03] Lawvere, F.W. and Rosebrugh, R. Sets for Mathematics. Cambridge University Press, 2003.
isbn: 9780521010603.

[Mak95] Makkai, Michael. First Order Logic with Dependent Sorts, with Applications to Category
Theory. 1995. url: https://www.math.mcgill.ca/makkai/folds/foldsinpdf/
FOLDS.pdf.

[Uni13] Univalent Foundations Program, The. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study: https://homotopytypetheory.org/book,
2013.

All diagrams were written in LATEX with the tikz package.

MA213 | 22

https://ncatlab.org/nlab/revision/Yoneda+embedding/39
https://ncatlab.org/nlab/show/Yoneda+embedding
https://ncatlab.org/nlab/show/Yoneda+embedding
http://pi.math.cornell.edu/~danielhl/modern_moduli_theory.pdf
http://pi.math.cornell.edu/~danielhl/modern_moduli_theory.pdf
https://www.youtube.com/watch?v=JOp7mH72Jlg
https://www.youtube.com/watch?v=JOp7mH72Jlg
https://arxiv.org/abs/0810.1279
https://www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf
https://www.math.mcgill.ca/makkai/folds/foldsinpdf/FOLDS.pdf
https://homotopytypetheory.org/book

	Table of Contents
	Introduction
	Categories
	Commutative Diagrams
	Functors
	Full and Faithful Functors

	Natural Transformations
	Vertical Composition
	Natural Isomorphisms

	Hom-Functors
	The Yoneda Lemma
	The Yoneda Embedding

	Addendum
	Group-Like Algebraic Structures
	Universal Set
	Set-Theoretic Problems
	Horizontal Composition
	Adjoint Functors

	References

